Categories
Further Mathematics Notes

Trigonometric Identities and graphs of inverse trigonometric ratios Pythagoras Theorem

Example

If asinѳ + bcosѳ = p

andacosѳ – bsinѳ = q

show that a2 + b2 = p2 + q2

Solution

asinѳ + bcosѳ = p                                                        …(1)

acosѳ – bsinѳ = q                                                        …(2)

Squaring both sides of (1)

            (asinѳ + bcos)2 = p2

: a2 sin2ѳ + 2absinѳ cosѳ + b2cos2ѳ = p2                     …(3)

Squaring both sides of (2)

(acosѳ – bsinѳ)2 = q2

a2cos2ѳ – 2absinѳ cosѳ + b2cos2ѳ = q2            …(4)

Adding (3) and (4)

a2sin2ѳ + 2absinѳ cosѳ + b2cos2ѳ + a2cosѳ – 2absinѳ cosѳ + b2sin2ѳ = p2q2

: a2sin2ѳ + a2cos2ѳ + b2cos2ѳ + b2sin2ѳ = p2 + q2

a2(sin2ѳ + cos2ѳ) + b2(cos2ѳ + sin2ѳ) = p2 + q2

But sin2ѳ + cos2ѳ = 1

: a2 + b2 = p2 + q2

Evaluation

Sketch the graph of:

(i) y = sin2x                                                                 (ii) y = cos x

(iii) y = sec x                                                                (iv) cosec x

all at intervals of 30◦ range 0≤ x ≤ 360.

General Evaluation

(1) Draw the graph of y = 2cosx – 1 in the range 0◦ ≤ x ≤ 360◦ at intervals of 30◦.

(2) Draw the graph of y = 3sin x – 1 in the range of 0◦ ≤ x ≤ 360◦ at intervals of 30◦

(3) Prove that sec2ѳ + cosec2ѳ = (tanѳ + cotѳ) 2.

Read our disclaimer.

AD: Take Free online baptism course: Preachi.com MAKE-MONEY

Discover more from StopLearn

Subscribe now to keep reading and get access to the full archive.

Continue reading