CONTENT
- Solving Simultaneous Equations Using Elimination and Substitution Method
- Solving Equations Involving Fractions.
- Word problems.
SIMULTANEOUS LINEAR EQUATIONS
Methods of solving Simultaneous equation
i. Elimination method
ii. Substitution method
iii. Graphical method
ELIMINATION METHOD
One of the unknowns with the same coefficient in the two equations is eliminated by subtracting or adding the two equations. Then the answer of the first unknown is substituted into either of the equations to get the second unknown.
SUBSTITUTION METHOD
One of the unknowns (preferably the one having 1 has its coefficient) is made the subject of the formula in one of the equations and substituted into the other equation to obtain the value of the first unknown which is then substituted into either of the equations to get the second unknown.
FURTHER EXAMPLES
Solve for x and y simultaneously: 2x – 3y + 2 = x + 2y – 5 = 3x + y.
Solutions
2x – 3y + 2 = x + 2y – 5 = 3x + y
Form two equations out of the question
2x – 3y + 2 = 3x + y
x + 2y – 5 = 3x + y
OR
2x – 3y + 2 = x + 2y – 5 ————- eq 1
x + 2y – 5 = 3x + y ————– eq 2
Rearrange the equations to put the unknown on one side and the constant at the other side.
2x – 3y – x – 2y = – 5 – 2
2x – x – 3y – 2y = -7
x – 5y = -7 —————- eq 3
From eqn 2
x – 3x + 2y – y – 5
– 2x + y = 5 ————- eq 4
Using substitution method solve eq 3 & 4
x – 5y = -7 —————- eq 3
-2x + y = 5 ————— eq 4
Make y the subject in eq 4.
y = 5 + 2x ————— eq 5
Substitute eqn 5 into eqn 3.
x – 5 (5 + 2x) = -7
x – 25 – 10x = -7
-9x – 25 = -7
-9x = -7 + 25
-9x = 18
x = 18/-9
X = -2
Substitute x = – 2 into eqn 5
y = 5 + 2x
y = 5 + 2(-2)
y = 5 – 4
y = 1
\ x = -2, y = 1
Simultaneous equations using Graphical method
EVALUATION
1.The sum of two numbers is 110 and their difference is 20. Find the two numbers.
2.A pen a ruler cost #30.If the pen costs #8 more than the ruler, how much does each item cost ?
BONUS: 1 HOUR+ TONS OF SIMULTANEOUS EQUATION SOLVED EXAMPLES:
GENERAL EVALUATION AND REVISION QUESTION
1. Solve the following simultaneous equation: 3(2x – y) = x + y + 5 & 5(3x – 2y) = 2 (x –y) + 1
2. Five years ago, a father was 3 times as old as his son. Now, their combined ages amount to 110years. How old are they?
3. A doctor and three nurses in a hospital together earn #255 000 per month, while three doctors and eight nurses together earn #720 000 per month. Calculate (a) how much a doctor earns per month. (b) How much a nurse earns per month.
4. Solve simultaneously, 2x + 2y = 1; 32x+y = 27
5. Solve: 2x – 2y + 5 = 3x – 4y + 2 = -1
WEEKEND ASSIGNMENT
1. If (x-y) log106 = log10 216 and 2 x+y =32 , calculate the values of x and y
a. x=1 , y=4 b. x= 4 , y =1 c. x=-4 , y= 1 d. x=4, y= -1
2. The point of intersection of the lines 3x- 2y =-12 and x + 2y = 4 is …
a. (5, 0) b. (3, 4) c. (-2, 5) d. (-2, 3)
3. Find the value of (x – y), if 2x + 2y =16 and 8x – 2y = 44 a. 2 b. 4 c. 5 d. 6
4. If 5 (p +2q) =5 and 4 (p+3q) =16, the value of 3(p+q) is ….. a.0 b. -1 c.2 d. 1
Read our disclaimer.
AD: Take Free online baptism course: Preachi.com