Categories
Mathematics Notes

Solving Simultaneous Equations Involving One linear and One quadratic

SIMULTANEOUS EQUATIONS INVOLVING ONE LINEAR AND ONE QUADRATIC

One of the equations is in linear form while the other is in quadratic form.

Note: One linear, one quadratic is only possible analytically using substitution method.

Examples:

1. Solve simultaneously for x and y (i.e. the points of their intersection)

            3x + y = 10 & 2x2 +y2 = 19

Solution

3x + y = 10 ———– eq 1

2x2 + y2 = 19 ——— eq 2

Make y the subject in eq 1 (linear equation)

y = 10 – 3x ———- eq 3

Substitute eq 3 into eq 2

2x2 + (10-3x) 2   = 19

2x2+ (10 – 3x) (10 – 3x) = 19

2x2 + 100 – 30x – 30x + 9x2 = 19

2x2 + 9x2 – 30x – 30x + 100 – 19 = 0

11x2 – 60x + 81 = 0

11x2 – 33x – 27x + 81= 0

11x (x-3) – 27 (x – 3) = 0

(11x – 27) (x – 3) = 0

11x – 27 = 0  or x-3 = 0

11x = 27 or  x = 3

\ x = 27/11   or 3

Substitute the values of x into eq 3.

When x = 3

y = 10 – 3(x)

y = 10 – 3(3)

 y = 10 – 9 = 1

When x =27/11

y = 10 – 3(27/11)

y = 10 – 51/11

y = (110 – 51)/11

y = 59/11

\when x = 3, y = 1

x = 27/11    ,   y =  59/11

MORE EXAMPLES

Solve simultaneously for x and y.

3x – y = 3 ——– eq 1

9x – y 2 = 45 ——— eq 2

Solution

From eq 2

(3x)2 – y = 45

(3x-y) (3x+y) = 45 ———- eq 3

Substitute eq 1 into eq 3

3 (3x + y) = 45

 3x + y = 15 ……………..eq4

Solve eq 1 and eq 4 simultaneously.

3x – y = 3 ——— eq 1

3x + y = 15 ——– eq 4

eq 1 + eq 4

6x  =  18

x  =  18/ 6

x = 3

Substitute x = 3 into eq 4.

3x + y = 15

3 (3) + y = 15

9 + y = 15

y = 15 – 9

y = 6

\ x = 3, y = 6

Evaluation

Solve    for x   and   y in the following pairs of   equations

1. (a) 4x2 – y2 = 15                              (b) 3x2 +5xy –y2 =3

            2x – y = 5                                               x  –  y  = 4

WORD   PROBLEMS LEADING TO LINEAR AND QUADRATIC EQUATIONS

Example

The product of two numbers is 12. The sum of the larger number and twice the smaller number is 11. Find the two numbers.

Solution

 Let    x  = the larger number

y  = the smaller number

Product,  x y  =  12    …………….eq1

      From the last statement,

                          x + 2y  =  11  ………….. eq2

       From eq2,   x  =  11 – 2y   ……………eq3

       Sub. Into  eq1

y(11 – 2y) = 12

                            11y – 2y2  = 12

                             2y2 -11y + 12 = 0

                            2y2 – 8y – 3y + 12 = 0

                             2y(y-4) – 3(y-4) = 0

                              (2y-3)(y-4)  =0

                               2y-3 =0 or  y-4 =0

                                 2y = 3 or   y = 4

                                   y= 3/2 or 4

when y = 3/2                                             when  y=4

        x = 11 – 2y                                      x = 11- 2y

        x = 11 – 2(3/2)                                  x = 11 – 2(4)

        x = 11 – 3                                           x = 11 – 8

         x = 8                                                  x = 3

Therefore, (8 , 3/2)(3 , 4)

Evaluation

Solve the following simultaneous equation      

1. (a)  22x-3y = 32,   3x-2y = 81      (b) 2x+2y=1, 32x+y = 27

2. Bisi’s and Fibie’s ages add up to 29. Seven  years  ago  Bisi  was  twice  as  old  as  Fibie. Find their present ages.

GENERAL EVALUATION AND REVISION QUESTIONS

1. Solve  the   simultaneous  equation:   3x2  –  4y  = -1  & 2x  –  y  = 1

2. Five  years  ago, a  father  was  3  times  as  old  as  his  son, now  their  combined  ages  amount  to  110  years. How old are they?

3. Solve:  4x2 – y2 = 15   &  2x  –  y =  5

4. Seven cups and eight plates cost # 1750.  Eight cups and seven plates cost #1700. Calculate the cost of a cup and  of  a  plate.

WEEKEND ASSIGNMENT       

Solve each of the following pairs of equations simultaneously,

1.  xy = -12 ; x – y = 7   a. (3 , -4)(4 ,-3)          b. (-2 ,4)(-3, -4)    c.(-4, 5)(-2 , 3)     d.(3 ,-3)(4,-4)

2.  x – 5y = 5 ; x2 – 25y2 = 55   a (-8, 0)(3/5 , 0)     b. (0, 0)(-8 , 3/5)    c. (8 , 3/5) d. (0, 8)(0, 3/5) 

3.  y = x2 and y = x + 6     (a).(0,6) (3,9)      (b)(-3,0) (2,4)      (c)  (-2,4) (3,9)     (d).(-2, 3), (-3,2)

4.  x – y = -3/2 ;  4x2 + 2xy – y2 = 11/4 : a. (-1, 1/2)(1, 5/2).           b. (3, 2/5) (1, 1/2)         c.(3/2 , -1) (4,2)              d.(-1 , -1/2)(-1 , 5/2)

5.  m2 + n2 = 25 ; 2m + n – 5 = 0 : a. (0,5)(4, -3) b.(5,0)(-3,4)c.(4,0)(-3,5) d(-5,3)(0,4)

THEORY

1a. Find the coordinate of the points where the line 2x – y = 5 meets the curve 3x2 – xy -4 =10

b. Solve the simultaneous equation: 22x+4y = 4, 33x + 5y – 81= 0

2.  A woman is q years old while her son is p years old. The sum of their ages is equal to twice the difference of their ages. The product of their ages is 675.

Write down the equations connecting their ages and solve the equations in order to find the ages of the woman and her son. (WAEC)

Read our disclaimer.

AD: Take Free online baptism course: Preachi.com MAKE-MONEY

Discover more from StopLearn

Subscribe now to keep reading and get access to the full archive.

Continue reading