Categories
Exam Lessons Further Mathematics

Binomial Expansion: Pascal Triangle, Binomial Theorem Of Negative, Positive And Fractional Power

Before using this website, you must read our disclaimer here.

GENERAL EVALUATION

1) Write down and simplify all the terms of the binomial expansion of ( 1 – x )6 . Use the expansion to evaluate  0.9976  correct to 4 dp

2) Write down the expansion of  ( 1 + ¼ x ) 5 simplifying all its coefficients

3) Use the binomial theorem to expand  ( 2 – ¼ x)5 and simplify all the terms

4) Deduce  the expansion of   ( 1 – x +x2 )6  in ascending powers of x

Reading Assignment

New Further Maths Project 2  page 73 – 78

WEEKEND ASSIGNMENT

If the first three terms of the expansion of ( 1 + px )n in ascending powers of  x are   1 + 20v + 160x find  the value of

1)  n  a) 2  b) 3  c) 4  d) 5

2) p   a) 2  b) 3  c) 4  d) 5

3) In the expansion of  ( 2x + 3y )4  what is the coefficient of  y4   a) 16  b) 81  c) 216  d) 96

4) How many terms are in the expansion  of  ( 1 – 4x ) 5  a) 3  b) 5  c) 6  d) 8

5) What is the third term in the expansion of  ( 1 – 3x )6 in ascending powers of x  a) 18  b) -540  c) 135  d) 729

THEORY

1) Using binomial theorem, write down and simplify the first seven terms of the expansion of  ( 1 + 2x )10 in ascending powers of x

2) Expand  ( 2 + x )5 ( 1 – 2x ) 6 as far as the term in x3   . Evaluate  ( 1.999 )5 ( 1.002 )6