Skip to the content
Search
StopLearn
Menu
Menu
Search
Home
Courses
Secondary School
Senior Secondary School
SS1 Online Class & Lesson notes
SS1 First Term Mathematics Senior Secondary School
SS1 First Term Mathematics Senior Secondary School
Addition, Subtraction and Multiplication of Modulo Arithemetic
Addition of and Subtraction of Modulo Arithmetic:
Modular Multiplication by
Khan Academy
data-perseus-paragraph-index=”0″>
Let’s explore the multiplication property of modular arithmetic:
data-perseus-paragraph-index=”0″>
(A * B) mod C = (A mod C * B mod C) mod C
data-perseus-paragraph-index=”0″>
Example for Multiplication:
data-perseus-paragraph-index=”0″>
Let
A=4, B=7, C=6
data-perseus-paragraph-index=”0″>
Let’s verify:
(A * B)
mod C = (
A mod C
*
B
mod C
) mod C
data-perseus-paragraph-index=”0″>
LHS
= Left Hand Side of the Equation
data-perseus-paragraph-index=”0″>
RHS
= Right Hand Side of the Equation
data-perseus-paragraph-index=”0″>
LHS =
(A * B)
mod C
data-perseus-paragraph-index=”0″>
LHS =
(4 * 7)
mod 6
data-perseus-paragraph-index=”0″>
LHS =
28
mod 6
data-perseus-paragraph-index=”0″>
LHS =
4
data-perseus-paragraph-index=”0″>
RHS = (
A
mod C
*
B
mod C
) mod C
data-perseus-paragraph-index=”0″>
RHS = (
4 mod 6
*
7 mod 6
) mod 6
data-perseus-paragraph-index=”0″>
RHS = (
4 * 1
) mod 6
data-perseus-paragraph-index=”0″>
RHS =
4 mod 6
data-perseus-paragraph-index=”0″>
RHS =
4
data-perseus-paragraph-index=”0″>
LHS = RHS = 4
data-perseus-paragraph-index=”0″>
Proof for Modular Multiplication
data-perseus-paragraph-index=”0″>
We will prove that
(A * B) mod C = (A mod C * B mod C) mod C
data-perseus-paragraph-index=”0″>
We must show that
LHS = RHS
data-perseus-paragraph-index=”0″>
From the quotient remainder theorem we can write
A
and
B
as:
data-perseus-paragraph-index=”0″>
A = C * Q1 + R1
where 0 ≤ R1 < C and Q1 is some integer.
A mod C = R1
data-perseus-paragraph-index=”0″>
B = C * Q2 + R2
where 0 ≤ R2 < C and Q2 is some integer.
B mod C = R2
data-perseus-paragraph-index=”0″>
LHS = (A * B) mod C
data-perseus-paragraph-index=”0″>
LHS = ((C * Q1 + R1 ) * (C * Q2 + R2) ) mod C
data-perseus-paragraph-index=”0″>
LHS = (C * C * Q1 * Q2 + C * Q1 * R2 + C * Q2 * R1 + R1 * R 2 ) mod C
data-perseus-paragraph-index=”0″>
LHS = (C * (C * Q1 * Q2 + Q1 * R2 + Q2 * R1) + R1 * R 2 ) mod C
data-perseus-paragraph-index=”0″>
We can eliminate the multiples of C when we take the mod C
data-perseus-paragraph-index=”0″>
LHS = (R1 * R2) mod C
data-perseus-paragraph-index=”1″>
Next let’s do the
RHS
data-perseus-paragraph-index=”0″>
RHS =
(A mod C * B mod C) mod C
data-perseus-paragraph-index=”0″>
RHS = (R1 * R2 ) mod C
data-perseus-paragraph-index=”1″>
Therefore RHS = LHS
data-perseus-paragraph-index=”2″>
LHS = RHS = (R1 * R2 ) mod C
Read our
disclaimer.
AD: Take Free online baptism course:
Preachi.com
Share this:
Click to share on Facebook (Opens in new window)
Click to share on Twitter (Opens in new window)
Click to share on Telegram (Opens in new window)
Click to share on WhatsApp (Opens in new window)
Related
Modal title
Main Content